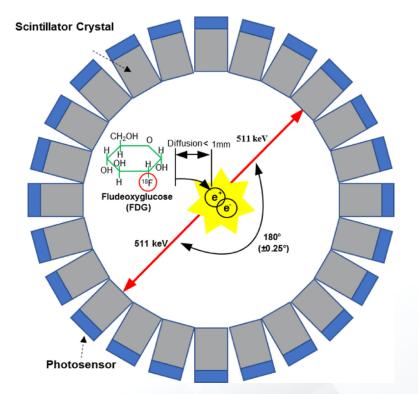


PET/CT and Theranostics The Future in Cancer Treatment


Shared Medical Services: EXCELLENCE IN IMAGING

PET/CT: What is it and how does it work?

- PET/CT is a specialized area of Nuclear Medicine.
- Imaging is done on a dedicated PET/CT scanner.
 - CT: Low dose CT is performed for attenuation correction and to create the roadmap of the anatomy for the Radiologist.
 - PET: Positron Emission Tomography is the Nuclear Medicine imaging.

SHARED MEDICAL SERVICES

PET/CT: What is it and how does it work?

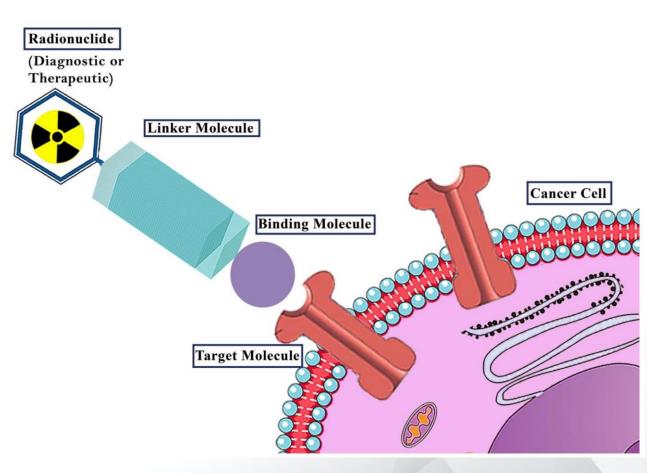
Commonly Used Imaging Agents

- **FDG**: Most commonly used agent for PET/CT.
 - Labelled with F-18
 - Easiest explanation, we're imaging glucose metabolism.
 - Cancer cells are extremely inefficient and require a lot of energy to replicate.

PSMA: Prostate Specific Membrane Antigen

- Comes labelled with F-18 or Ga-68
- Why does this work? Prostate cancer cells have a specific antigen on the cell membrane the agent binds to and can be imaged.
- PSMA will also "seek" our prostate specific metastatic disease.

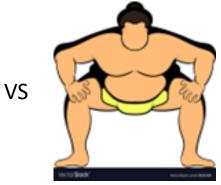
Dotatate: Neuroendocrine Tumor Specific


- Comes labelled with Ga-68 or Cu-64
- Cells with somatostatin receptors attract and attach to the dotatate.
- Neuroendocrine tumors have higher than normal somatostatin expression.
- Other Agents:
 - Rb-82 for cardiac imaging, Beta-Amyloid agents for alzhiemers and dementia imaging.

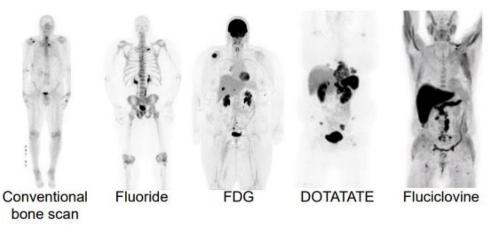
SHARED MEDICAL SERVICES

Introduction to Theranostics: How does it work?

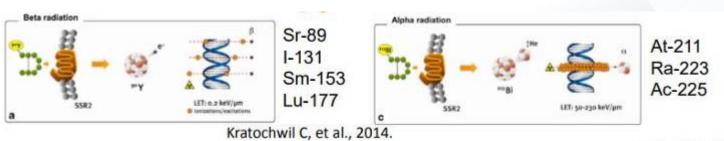
- First, we need to find a unique molecule that doesn't exist anywhere else in the body. This is called the receptor, or target molecule.
- Second, we need a ligand, or binding molecule, that will ONLY bind to the target molecule.
- Third, we need a chelator to attach the radioactive particle to.
- This is when the magic happens!



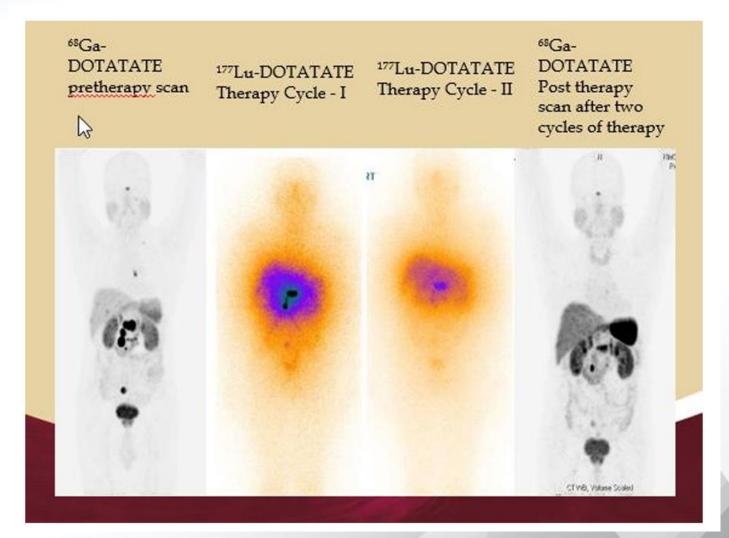
Introduction to Theranostics: Radiation Matters


Different Types of Radiation

- Gamma:
 - Used for imaging because of the high energy and ability to travel long distance.
- Alpha and Beta:
 - Big, heavy particles, travel very short distances and deliver a big punch. These are used for therapy.

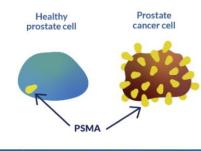


Imaging Agents:

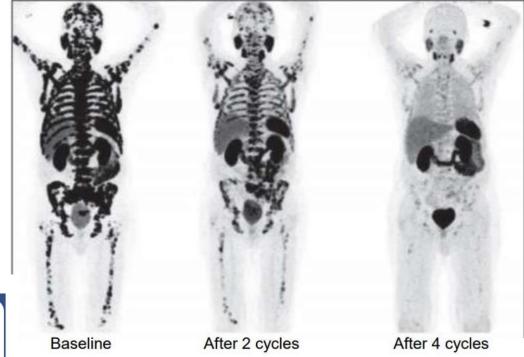

Therapeutic Agents:

Lutathera: Neuroendocrine Radiotherapy

- Diagnostic agent: Ga-68 or Cu-64 Dotatate
- Therapeutic agent: Lu-177 Lutathera
- Lutecuim 177 is a beta emitter
 - Short range in soft tissue
 - Diameter of a human hair
 - Packs a big punch!



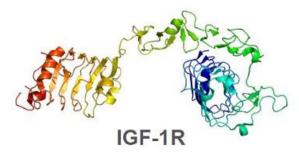
- Diagnostic agent: Ga-68 or F-18 PSMA
- Therapeutic agent: Lu-177 PSMA
- See what is happening here?


PSMA is a precise imaging target that can help detect prostate cancer

- PSMA, which stands for prostate-specific membrane antigen, is a protein that is abundant on the surface of prostate cancer cells. This is what makes PSMA a good target for prostate cancer imaging
- PSMA is also found on cancer cells that have spread to other parts of the body, like the lymph nodes or bones
- PSMA imaging may be able to detect tumors that are undetectable with conventional imaging, which relies on size and shape of tumor

Pluvicto: PSMA Radiotherapy

Theranostics: 68Ga-PSMA-PET/177Lu-PSMA



What is coming next?

[²²⁵Ac]-FPI-1434 Background

Type I insulin-like growth factor receptor (IGF-1R) is a transmembrane protein which is overexpressed in solid tumors

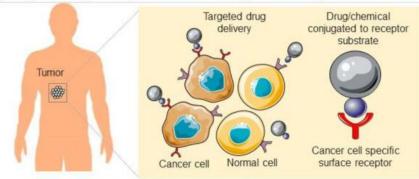
Implicated in:

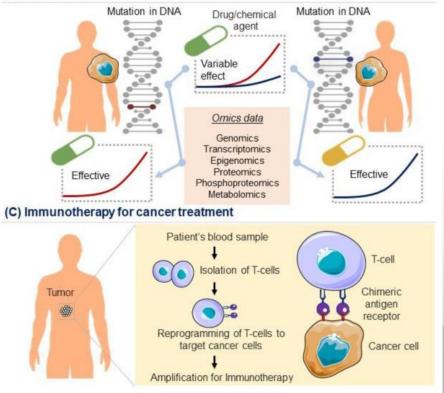
- Increased cellular proliferation
- Metastatic potential
- Cell survival
- Chemotherapy and radiotherapy resistance

IGF-1R Ex	proceion	in Solid	Tumore
IOL-IVEY	pression	in sonu	Tulliors

100%	Ovarian
100%	Bladder
90%	Sarcomas
62%	Head & Neck
62%	Prostate
59%	NSCLC
57%	Pancreatic
50%	Colorectal
50%	Liver
47%	Breast 00
43%	Small Cell Lung 👶 👔
40%	Esophagus
36%	Renal
36%	ACC

Scientists are working a radiotherapy for ER+ breast cancer. Estrogen is the receptor molecule.


University of Minnesota is in a Phase 1 trial for Ac-225 FPI-1434. FPI is expressed in ALL solid tumors.


Why is this different from conventional chemo and radiation therapy?

- Chemotherapy
 - Kills good and bad cells. Chemotherapies cannot differentiate.
 - It is highly effective but causes multiple side effects.
- Radiation Therapy
 - Kills good and bad cells around the primary treatment area.
 - Highly effective but also has many side effects.
- Theranostics:
 - Targeted therapy with very little to no collateral damage.
 - Spares the good cells while killing the cancer cells.
 - Research process takes time to discover the ligands and unique target molecules for each cancer.

(A) Targeted drug delivery of anti-cancer drugs/chemical agents

(B) Personalized medicine for cancer treatment

DISCOVER THE SMS DIFFERENCE

ESTABLISHED 1980